HKAL Test bank (Essay) : Part 1 Mechanics

Chapter 1 Kinetmatics
1.1
Kinematics Definitions

1.1.1
Falling in a Viscous Liquid

A raindrop which falls at terminal speed.

(a)
Constant velocity → no net force.

(b)
The weight of the raindrop, pointing downwards is balanced by the air resistance (drag force), pointing upwards. (Should mention either direction.)

1.1.2
Bouncing Ball with / without Energy Loss

A small ball is released stationary from a height of 1 m above a smooth expanse of ground. The ball falls under gravity, hits the ground and bounces up.
(A)
Assuming that no energy is lost in the process


(i)
By v2 = u2 + 2 as, vy = 
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(ii)
During the flight of the ball when it is not in contact with the ground, only gravitational force (weight) is acting on the ball. When the ball is in contact with the ground, the reaction force from the ground also acts on it.

(iii)
Before the rebound, the acceleration is constant as the ball is falling freely and so its velocity increases uniformly from zero to 4.5 m s-1 before hitting the ground.

(iv)
When the ball is in contact with the ground, the acceleration of the ball is very large and directed upward as the upward reaction force is greater than the weight of the ball. The velocity of the ball changes abruptly from downward (+ ve) to upward (-ve).

(v)
During the upward flight, the acceleration of the ball is constant and its velocity increases uniformly from –4.5m s-1(upwards)to zero at the highest point.
(vi)
The momentum of the ball is not conserved when it hits the ground since there is a resultant external force acting the ball – reaction force minus gravitational force. (Remark : However, if the ball and the earth are considered as a single system, the total momentum of the system is conserved since the gravitational forces and reaction forces acting on them are now internal forces.)


(B)
If a ball of greater mass is used.

As the acceleration due to gravity is independent of the mass of the ball, the acceleration-time graph and hence the velocity-time graph remain the same.

(C)
If some kinetic energy is lost when the ball hits the ground

The magnitude of the velocity decreases after the rebound and hence the time taken for the upward flight decreases.(Accept graphical explanation) The shape of the acceleration-time graph remains unchanged.

1.2
Linear Motion (Constant Acceleration)

1.2.1
Derivation of the Expression for Kinetic Energy
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(a)
Let acceleration = a and time 1 SYMBOL 174 \f "Symbol" 2 be t. Force = ma.
(b)
Then, a = v/t, s = (0+v)t/2 = vt/2.
(c)
Work done = ma ( s = ½mv2 = K.E., which is the stored energy of body.
1.2.2
Stopping Distance

(a)
Apparatus : 1 trolley, 1 runway and 1 light gate connected to a timer. 


[image: image6.wmf]h

light

gate


(b)
Set up the tilting runway as shown. Arrange a light gate for measuring the speed of the trolley near the lower end of the tilting runway.

(c)
The speed of the trolley is calculated from the time taken for the card to pass the light gate.

(d)
Measure the stopping distance of the trolley, which is from the light gate up to the place where it stops. Repeat the experiment by releasing the trolley at different heights.

(e)
Plot a graph of stopping distance against the square of the speed recorded (representing the kinetic energy of the trolley). A linear graph should be obtained showing the stopping distance is directly proportional to the kinetic energy.

(f)
Source of error: the friction at the wheels of the trolley is not constant.
1.3
Parabolic Motion (Graphs)

(a)
A small ball is projected horizontally with a certain speed from a height of 1 m above a smooth expanse of ground. The ball falls under gravity, hits the ground and bounces up.

(b)
The acceleration due to gravity is not affected by the horizontal speed of the ball, both acceleration-time and vertical velocity-time graph remain the same.

1.3.1
Daily Example

(a)
Shot put (parabolic) 

(b)
Neglect air resistance, the shot is only acted upon by its weight (mg) whose magnitude is constant and its direction is always towards the ground. As a result, the vertical component of the motion is under constant acceleration towards the ground while the horizontal component is unaffected (i.e. uniform motion).
HKAL Test bank (Essay) : Part 1 Mechanics

Chapter 2 Newton’s Laws of Motion
2.1
Newton’s Laws and Momentum

2.1.1
Inertia

2.2.1.1
Definition

(a)
The inertia of a body is its reluctance to change the velocity.

(b)
A force is required to change the velocity of the body.
2.1.1.2
Example of a Moving Object but with Zero Net Force

A trolley moves (with uniform velocity) on a friction-compensated runway. No net force is acting on the trolley, however it is moving but is not at rest.
2.1.2
Newton’s Second Law of Motion

2.1.2.1
Meaning

2nd law - The rate of change of momentum of a body is proportional
to the resultant force acting on the body and this occurs in the direction of this force.

Alternative Description

The rate of change of momentum produced in a body is proportional to the resultant force acting on it and occurs in the direction of the force.
2.1.2.2
Demonstrating Experiment

(a)
Set up a friction-compensated runway.

(b)
To investigate the relation between force and acceleration, a trolley is pulled by one, two and three identical elastic strings which are stretched by the same amount.

(c)
The corresponding accelerations are recorded and a graph of the force (number of elastic strings) is plotted against the acceleration, which shows a straight line
 passing through the origin (linear relationship).

(d)
To investigate the relation between mass and acceleration, use one elastic string to pull one, two and three trolleys. The corresponding accelerations are recorded and a graph of 
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 is plotted against the acceleration, which shows a straight line passing through the origin (linear relationship).

(e)
Thus, acceleration 
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(f)
For a body of mass 1 kg and moves with acceleration 1 m s-2, the force acting on it is 1 N.
(g)
So demonstrating Newton’s second’s law : force 
[image: image10.wmf]µ

 mass × acceleration.

2.1.2.3
Example

(a)
For a body, initially at rest, is subject to a constant force.
(b)
The body will move with an acceleration a in the 
direction of the resultant force F and a 
= F/m, where m is the body mass.
2.1.3
Newton’s Third Law of Motion

2.1.3.1
Meaning

3rd law - if a body A exerts a force on a body B, then body B exerts an equal but opposite force on body A.
2.1.3.2
Example

(A)
Stationary rock

(i)
A man pushes a heavy rock resting on the ground, but it does not move.
(ii)
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The pushing force acting on the rock is balanced by the friction/resistance from the ground, but not by the reaction force which acts on the man.
(B)
Jumping boy
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(i)
W : weight of the boy,
W’ : gravitational force acting on the earth by the boy,


R : reaction force acting on the boy by the ground,


R’ : reaction force acting on the ground by the boy.

(ii)
The reaction R gives a resultant upward force (R-W) that enables the boy to accelerate vertically.
(C)
Launching rockets

(i)
When the fuel in a rocket burns, a stream of gas is produced and then escapes at high velocity through the exhaust nozzle. The exhaust gases are pushed backwards by the rocket.

(ii)
Therefore a reaction acts on the rocket in the opposite (upward) direction and it is this force that overcomes its weight and enables it to accelerate.
2.1.4
Feeling of One’s Weight

2.1.4.1
Mass and Weight

(i)
The mass m of a body is constant and is a measure of its inertia to any enforced change of state, either stationary or moving. For a force F the body experiences an acceleration SYMBOL 181 \f "Symbol" 1/mass.
(ii)
The weight W of a body can be variable and is the force which would act if the body were allowed to fall freely under the influence of gravity.


W = mg, where g is the local 'free-fall' acceleration due to gravity.
(iii)
In a lift moving downwards with an acceleration (or for a lift moving up, suddenly stops), there will be less reaction between the weight (force) of the passenger and the floor of the lift, giving the impression of weightlessness.
2.1.4.2
Example

A car travelling over a hump which is an arc of a vertical circle.


[image: image13.wmf]
(i)
The car and hence the passenger is undergoing circular motion, therefore he is experiencing a centripetal acceleration a = v2 / r.


(ii)
There are two forces acting on the passenger:


(I)
the force of gravity, W = mg, acting downwards,


(II) the force of the seat, R, acting upwards.


(iii)
As mg – R = mv2 / r (part of the weight is used as centripetal force)



i.e. R = m(g – v2/r) < mg (force of the seat is smaller than weight/normal)




(iv)
Thus the passenger would feel lighter than normal.
2.2
Momentum and Impulse

2.2.1
Proof of the Principle of Conservation of Momentum
For two objects having a head-on collision.


      
   
A           B
Before collision 
m1, u1 and 
m2, u2
After collision  
m1, v1 and 
m2, v2
(a)
For time of impact t and u1 > u2.
(b)
Body A will exert a force F on body B for a time t and by Newton's 3rd law body B will exert a force -F on body A (opposite direction).
(c)
By Newton's 2nd Law, force = rate of change of momentum (constant of proportionality = 1)
(d)
Hence 

since forces on bodies are equal and opposite.
(e)
So m1u1 + m2u2 = m1v1 + m2v2, and linear momentum is conserved.
Alternative Description

Consider the head-on collision between two billiard balls A and B moving with velocity u1 and u2 respectively (u1 > u2) in the same direction.
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(a)
Let FA and FB be the average forces acting on A and B respectively during collision and Δt be the time during which the two balls are in contact.

(b)
By Newton’s second law, the impulse FAΔt will change the momentum of ball A, i.e.



FAΔt = m1v1 – m1u1
(c)
Similarly, the momentum of ball B will change by FBΔt,



FBΔt = m1v2 – m2u2
(d)
By Newton’s third law, FA = -FB (equal in magnitude but are opposite in direction), therefore



  m1v1 – m1u1
= -(m2v2 – m2u2),
m1u1 + m2u2 = m1v1 + m2v2.
2.2.2
Three Types of Collision

2.2.2.1
Definition

(a)
In a perfectly elastic (or elastic) collision, the kinetic energy of the system is conserved.

(b)
In a perfectly inelastic collision, the two objects move together after collision.

(c)
In a partially elastic collision, the kinetic energy of the system decrease but the two objects move separately after collision.

Alternative description

The tracks of an α-source are observed in a diffusion cloud chamber in which a trace amount of helium is introduced.
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(a)
Elastic collision

(i)
Total kinetic energy conserved,

.

(ii)
Total momentum (vector) is conserved, 
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(b)
Non-elastic collision
(i)
Total kinetic energy is not conserved some of energy appearing in another form due to work done against an internal force, increasing the internal energy such as e.g. heat.

(ii)
Total momentum (vector) is conserved.
2.2.2.2
Conservation of Kinetic Energy

For two objects having a head-on collision.

(a)
K.E. may not be conserved since some energy may be converted in another form such as heat and sound.

(b)
Total energy is, however, conserved.
2.2.2.3
Perfectly Elastic Collision

Ball of mass m1 moving with velocity u1 undergoes head-on collision with another ball of mass m2 which is initially at rest on a smooth horizontal surface. The collision is perfectly elastic.
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(a)
Let the velocity of m1 after collision be v1.


By the conservation of linear momentum m1u1 = m1v1 + m2v2 or
m1 (u1 – v1) = m2v2
---(1).


As the collision is perfectly elastic, 
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Combining (1) and (2)
  m1 (
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  m2 (u1 + v1)
= m1 (u1 – v1),








  
  v1
= 
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(b)
(i)
For m1 >> m2, therefore v1 
[image: image30.wmf]»

 u1.

For example the velocity of a bowling ball is hardly affected by collision with an inflated beach ball of the same size.


(ii)
For m1 = m2, therefore v1 = 0.

For example a billiard ball stops when it collides head-on with another stationary billiard ball.


(iii)
For m1 << m2, therefore v1 
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 -u1.

For example a ball drops vertically onto the ground (collision with the earth) and rebounds with a reversed velocity and will reach the same height.

(c)
To slow down the fast neutrons effectively, the stationary targets for collision should be of nearly the same mass of neutrons. Therefore materials with numerous hydrogen centres (such as water) are preferred.
2.2.3
Collisions in 2-dimensions
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(a)
Let
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 = velocity of α-particle before collision, 
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 = velocity of α-particle after collision,
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 = velocity of the atom after collision.

(b)
By conservation of momentum, mα
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(c)
As the track is right-angled, (mαu)2 = (mαv1)2 + (mHev2)2, u2 = v12 + (
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(d)
As the collision is elastic, K.E. is conserved
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(e)
Comparing (1) and (2), mα = mHe.
2.2.4
Examples

(A)
A billiard ball strikes the smooth cushion of a billiard table at an angle and rebounds with the same speed.


(i)
Momentum of the billiard ball is not conserved.


(ii)
Its momentum perpendicular to the cushion is altered due to the normal reaction.
(B)
A rocket rises vertically upward during launching in the atmosphere near the earth’s surface.

Momentum of the rocket is not conserved as it is subjected to external forces such as thrust due to ejecting gases, gravity, air resistance.
(C)
A radioactive nucleus emits an α-particle.

When an α-particle is emitted, the daughter nucleus recoils in opposite direction and therefore its momentum is not conserved.
(D)
A ping pong ball which collides obliquely with a smooth wall.

(i)
When a ping pong ball collides with the wall, the velocity/direction of the ball changes.

(ii)
A net force must have been present while during collision, whose direction is perpendicular/normal to and away from the wall.

2.3
Work and Energy

2.3.1
Conservation of Mechanical Energy

(a)
(i)
A ball thrown vertically between two heights h1 & (h1 + h) will suffer a decrease of 

velocity u1 SYMBOL 174 \f "Symbol" u2.

(ii)
Since resistance of air can be neglected,
decrease in K.E. = increase in P.E.

(iii)
½mu12 - ½mu22 = mgh, where m is mass of body and g is free-fall acceleration.
(b)
If body were thrown in a viscous medium - such as water, mechanical energy would not be conserved. In addition work done against this opposing force would produce heating of the medium.

In fact loss of K.E. = gain of P.E. + gain of internal (heat) energy.
(c)
Bouncing ball


(i)
No equilibrium position between the two extreme ends and net force is acting.

(ii)
The force on the ball is directed towards the centre of the earth except at the moment of rebound.


(iii)
The force on the ball is constant except at the moment of rebound.
2.3.2
Together with the Principle of Conservation of Momentum

The diagram shows a set-up used to measure the speed of a bullet in the laboratory.
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The bullet of mass m is ‘fired’ horizontally towards a block of wood (of mass M, in which a hole has been drilled) suspended from two vertical inextensible strings (each of length L). On striking the block, the bullet is embedded and the block rises by swinging through an angle θ as shown.

(A)
Methods to ‘fire’ the bullet in laboratory


(i)
Use a spring-loaded gun (i.e. a compressed spring).

(ii)
Use cotton wool or plasticine inside the hole to ensure the collision to be inelastic (i.e. sticky).

(B)
Experimental and Theoretical values of v
(i)
The horizontal momentum of the system is conserved, therefore mv = (m + M)V where V is the common velocity just after impact.

(ii)
After the collision, the only forces acting on the system (block + bullet) are the weight and the string tensions (which do no work), therefore the mechanical energy is conserved.


(iii)
From energy conservation, 
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As h = L(1 – cosθ), by eliminating V, we have 
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(iv)
During the impact the supporting strings may deviate a bit from vertical, therefore some horizontal external force would act on the system resulting in the experimental value lower than the theoretical value.


(v)
L should be measured to the centre of gravity of he block instead to the top of it.
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Chapter 3 Circular Motion
3.1
Definition

3.1.1
Centripetal Acceleration

(a)
For a satellite around the earth (uniform circular motion).

(b)
The satellite is pulled by the earth (i.e. its own weight mg’) and this force is constant and its direction is always towards the centre of the earth/motion.

(c)
The whole of this force is used for centripetal acceleration or merely changing its direction of motion, the (tangential) speed of the satellite remains unchanged.
3.1.2
Derivation of the Centripetal Force Equation
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(a)
Draw vectors 
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 gives vector representation of velocity change A SYMBOL 174 \f "Symbol" B.
(b)
Since SYMBOL 100 \f "Symbol"

SYMBOL 113 \f "Symbol" SYMBOL 174 \f "Symbol" 0, direction at B is along 
[image: image53.wmf]BO

, magnitude of velocity change = vΔSYMBOL 113 \f "Symbol".
(c)
Since AB = vΔt = rΔSYMBOL 113 \f "Symbol", acceleration, a = v ΔSYMBOL 113 \f "Symbol"/Δt = v2/r = rSYMBOL 119 \f "Symbol"2, (v = rSYMBOL 119 \f "Symbol").
(d)
Force = ma = mrSYMBOL 119 \f "Symbol"2, directed towards O.
3.1.3
In Circular Motion, the Speed can be a Constant
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(a)
A constant (centripetal) force F acts towards the center O of the circle.

(b)
This provides an acceleration in this direction for the rotating body.

(c)
Only the speed v of body is constant, its velocity (and momentum) are continuously changing - due to the accelerating force F.
Alternative description

(a)
A body (e.g. a satellite revolving round the earth) moving with uniform circular motion. Although the speed is unchanged, the body continuously changes its direction (velocity).

(b)
The momentum changes. This is brought about by the (centripetal) force.
3.1.4
Dependence of Period

(A)
For period be a constant, when r increases, v also increases linearly with r as period T = 
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is constant, therefore a = 
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 actually increases.

(B)
For angular speed be a constant, when r increases, a = ω2r increases provided that ω = 
[image: image57.wmf]T

p

2

 is constant, which is ensured by constant period T.
3.2
Uniform Motion in a Horizontal Circle

3.2.1
Conical Pendulum
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(a)
T is tension in string, F centripetal force.
(b)
Resolving (1) vertically, mg = T cosSYMBOL 113 \f "Symbol", forces (2) horizontally F = T sinSYMBOL 113 \f "Symbol"
(c)
As F = ml sin SYMBOL 113 \f "Symbol" SYMBOL 119 \f "Symbol"2
, hence, cosSYMBOL 113 \f "Symbol" = 

.
(d)
Thus it follows that as SYMBOL 119 \f "Symbol" increases, SYMBOL 113 \f "Symbol" increases.
(e)
As SYMBOL 119 \f "Symbol" SYMBOL 174 \f "Symbol" SYMBOL 165 \f "Symbol", SYMBOL 113 \f "Symbol" SYMBOL 174 \f "Symbol" SYMBOL 112 \f "Symbol"/2, i.e. string becomes horizontal.
3.2.2
Experiment to Verify the Equation for Centripetal Acceleration
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(a)
The glass tube is held vertically, the bung is whirled around above his head by one student and 
the speed of bung is increased until the marker is just below tube.

(b)
Another student times, say, 50 revolutions of the bung. By moving marker the length l of the string can be varied and the relation between l and the angular velocity (() obtained. Since T (tension provided by screwnuts*) and mg are
 constant from T cosSYMBOL 113 \f "Symbol" = mg it is clear that SYMBOL 113 \f "Symbol" is constant.  Also T sinSYMBOL 113 \f "Symbol" = mr(², ( SYMBOL 181 \f "Symbol" 1/
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(c)
However there is friction between string and glass rod which may vary throughout experiment.
Alternative Description
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(a)
The string dips so that the vertical component of the tension balances the weight of the rubber bung.
(b)
     W cosθ
= mω2 r


(as T = W) 
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   W cosθ
= mω2 (L cosθ)




 W
= mω2 L
(c)
Friction exists at the opening of the glass tube.


(i)
The rubber bung is not swirled with constant speed.


(ii)
The string is not inextensible.


(iii)
The rubber bung is not swirled in a horizontal circle.

(d)
Improvement

(i)
Increase the weight W.


(ii)
Reduce the mass m of the rubber bung.


(iii)
Reduce the length L of the string.

(e)
The rubber bung goes along tangential direction to A due to inertia and falls as a projectile to the ground due to gravity.

3.2.3
Centrifuge
A closed tube containing a mixture of two liquids of densities ρ and ρ’ (ρ>ρ’) is attached at the end by a hinge (allowing vertical motion) to a rigid rod. If this rod, and also the tube, is rapidly rotated in a horizontal plane with an angular velocity ω.
(A)
Excess force
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(i)
Due to rapid rotation, SYMBOL 119 \f "Symbol" SYMBOL 174 \f "Symbol" SYMBOL 165 \f "Symbol", tube ~ horizontal. Pressures P, P’ = P + SYMBOL 68 \f "Symbol"P.


Net inward force on liquid density SYMBOL 114 \f "Symbol" in elemental volume,


F = (P + SYMBOL 68 \f "Symbol"P)A - PA = SYMBOL 68 \f "Symbol"PA   .......... (1)

(ii)
If this does not move radially, since liquid is being rotated, also


F = ( SYMBOL 114 \f "Symbol" SYMBOL 68 \f "Symbol"r A)rSYMBOL 119 \f "Symbol"2 = SYMBOL 68 \f "Symbol"PA   .......... (2)

(iii)
For a liquid of density SYMBOL 114 \f "Symbol"’ in same location, force on this liquid would be


F’ = ( SYMBOL 114 \f "Symbol"' SYMBOL 68 \f "Symbol"r A)rSYMBOL 119 \f "Symbol"2 = SYMBOL 68 \f "Symbol"P’A   .......... (3)

(iv)
Since SYMBOL 114 \f "Symbol" > SYMBOL 114 \f "Symbol"', SYMBOL 68 \f "Symbol"P’ < SYMBOL 68 \f "Symbol"P.
(v)
According to (2) for a liquid not moving radially SYMBOL 68 \f "Symbol"P increases radially outwards (with increase of r).

(vi)
Excessive force F - F’ = ( SYMBOL 114 \f "Symbol"-SYMBOL 114 \f "Symbol"’)SYMBOL 119 \f "Symbol"2rSYMBOL 68 \f "Symbol"rA.
(vii)
Hence the liquid of density SYMBOL 114 \f "Symbol"’ will have to move inwards until condition of (3) is satisfied.
(viii)
The action of a centrifuge is to separate liquids according to density, with those of greater density furthermost from axis of rotation.
(B)
Separation principle

(i)
In a centrifuge, at same location, the excess force on a liquid of density SYMBOL 114 \f "Symbol"’ compared with a liquid of density SYMBOL 114 \f "Symbol" - which does not move radially is

(Fex)c = ( SYMBOL 114 \f "Symbol"-SYMBOL 114 \f "Symbol"’) SYMBOL 119 \f "Symbol"2rSYMBOL 68 \f "Symbol"rA, from (2) and (3).

(ii)
For hydrostatic separation the excess force on the same liquid would be


(Fex)h
= upthrust – weight




= SYMBOL 114 \f "Symbol" SYMBOL 68 \f "Symbol"r Ag - SYMBOL 114 \f "Symbol"’ SYMBOL 68 \f "Symbol"r Ag


i.e. (Fex)h = (SYMBOL 114 \f "Symbol" - SYMBOL 114 \f "Symbol"’) SYMBOL 68 \f "Symbol"r Ag


Comparing forces, 



(iii)
For fast rotation, g/(lSYMBOL 119 \f "Symbol"2) = cos SYMBOL 113 \f "Symbol" << 1
i.e. (Fex)c >> (Fex)h.
(iv)
It can be seen that due to the greater excess force, separation should be quicker using a centrifuge.(Furthermore random Brownian motion of liquid molecules further delays the speed of separation for hydrostatic separation.)
Alternative Description
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(a)
Consider the part of liquid between A and B inside the rotating tube, the pressure at B is greater than that at A so as to provide the necessary centripetal force acting inwards.

(b)
For that part of the liquid the force due to pressure difference supplies exactly the centripetal force required.

(c)
If this part of the liquid is replaced by matter of smaller density/mass, the force is too large and the matter moves inwards.

(d)
Practical use


(i)
Cream is separated from milk.


(ii)
Separate solids in a suspension.


(iii)
Laundry drier spins to remove water from the clothes.



(I)
The drum of a laundry drier has many tiny holes on its surface.

(II)
When the drum spins, the reaction from its circumference on the wet clothes provides the necessary centripetal force acting inwards.

(III)
However there is no such reaction at those tiny holes and the excessive water in the clothes can no longer keep a circular path and goes out through the holes.
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Chapter 4 Gravitation
4.1
The Earth’s Field

4.1.1
Apparent Weight

Using a spring balance, a small object is found to weigh heavier at the north pole than at the equator.

(a)
The earth is not a perfect sphere (actually an oblate ellipsoid), i.e. the north pole is closer to the centre of the earth than at the equator.

The gravitational field strength (g
[image: image66.wmf]µ



 EMBED Equation.3  [image: image67.wmf]2
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) is greater at the north pole, consequently weight (mg) is larger.


The rotation of the earth ‘reduced’ the apparent gravitational field strength g’ at the equator,
apparent gravitational field strength at the equator = go – centripetal acc. = go​ – ω2 RE,


where go
= gravitational field strength at the equator if the earth is at rest,



 ω
= angular speed of rotation of the earth,



 RE
= radius of the earth.

(b)
For the same object, the beam balance readings would be the same at the north pole and at the equator (i.e. the same mass is needed to balance the weight of the object). This is because beam balance measures the ‘mass’ of the object, which is unchanged, by comparing the weights at both arms.
4.2
Orbital Motion

4.2.1
Kepler’s Laws (Third Law)

4.2.1.1
Proof

For a planet revolving round the sun in a circular orbit of radius r and with period T.
(a)
Gravitational force on the planet = centripetal force, 
[image: image68.wmf]2

r

m

GM

s

 = 
[image: image69.wmf]r

mv

2

.


where
G = Gravitational constant, Ms = mass of the sun, m = mass of the planet,




v = orbital speed of the planet.


i.e.
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r3 = 
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Alternative Description

(a)
For a body moving in a circular orbit there must be a force acting on it and directed towards centre of the circle.  Magnitude = mr(2, where the angular velocity ( = 2/T, T being period.
(b)
For the satellite this force is provided by the attraction of the earth.

(c)
Magnitude = GmM/r2, G being the gravitational constant.
(d)
Hence, 

= 

 -  which leads to relation, T ( r3/2.
4.2.1.2
Applicability

r3 = KT2 = 
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 is not valid for the satellite circling round the earth since the equation is only valid for objects moving round the sun as the constant K depends on the mass of the sun.
4.2.2
Geosynchronous Satellites

For a communications satellite which maintains a constant position above the earth’s surface.
(a)
The satellite remains above the same point on the earth, so it must be moving in a circular orbit.

(b)
Its velocity/direction is therefore changing and it is accelerating towards the earth so a net force is present.

(c)
The origin of the net force is the gravitational attraction between the satellite and the earth, which directs towards the centre of the earth.
4.2.3
Energy and Satellite Motion (with Damping)

Consider a satellite of mass m moving in a circular orbit of radius r around the earth of mass M and radius R.

(A)
Total energy of a satellite

(i)
We can write mv2/r = GMm/r2, where v is satellite speed. Hence v2 = GM/r.


Kinetic energy of satellite,
K.E. = 

= GMm/(2r).


Potential energy,  


P.E. = -GMm/r
.


Total energy of satellite, 
  E
= K.E. + P.E.




= -GMm/(2r).







   (or E
= 

)
(B)
Damping


(i)
Due to the frictional force there must be a reduction in the total energy, E.

(ii)
It follows from expression for E that r must reduce, making E a larger -ve value.

(iii)
From relation for v, i.e. v2 = GM/r  it follows that if r is reduced v increases.
4.2.4
Weightlessness

Similarities between : (i) a man is inside a lift falling freely and (ii) he is inside a space-craft moving in a circular orbit round the earth.

(a)
The man is said to be ‘weightless’ in both cases (i.e. no reaction).

(b)
Both are accelerating motions.

(c)
The respective weights are exactly used for acceleration (i.e. mg = ma).

(d)
Total mechanical energy is conserved.
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Chapter 5 Simple Harmonic Motion
5.1
Definition of S.H.M.

5.1.1
Definition of S.H.M.
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(a)
Body oscillates in position about point P (extremities points A and B).
(b)
At any location Q, the acceleration 

, k being a constant (or in words – the acceleration is proportional to the displacement from P and directed towards it).
Alternative Description

At all times the acceleration of the moving body is proportional to its displacement from a fixed point and is directed towards this point.
Alternative Description

A body is said to describe s.h.m. if its acceleration (or the net force on it) is always in opposite direction and proportional to its displacement from the equilibrium position.

5.1.2
Properties of S.H.M.

(a)
There exists between the two extreme ends an equilibrium position at which the net force acting on object is zero.

(b)
The force on the object is always directed towards the equilibrium position.

(c)
The force on the object is proportional to the displacement from the equilibrium position.

5.1.2
Examples of S.H.M.

Swinging suspended ceiling lamp, boat bobbing up and down in the sea, child on swing.
5.2
The Kinematics of SHM (Mathematical Approach)

5.2.1
The Superposition of Two S.H.M.

If Q represents the location of a mass m suspended from a vertically hanging, light spiral spring which undergoes oscillations in a vertical plane and having amplitude a and angular velocity ω. Now
an additional S.H.M., acting along the x-direction, is now superimposed upon the original motion of Q, having the same amplitude a and angular velocity ω.

(a)
Phase difference zero, a/( same for x-motion.
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Motion :
O ( A ( O ( B ( O, y = a sin (t, x = a sin (t.



Equation of line of motion AB is y = x.
(b)
Phase difference +(/2, a/( same for x-motion.
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Motion :
Clockwise, y = a sin (t, x = a sin ((t + (/2), or 
x = a cos (t.



Equation of curve of motion is x2 + y2 = a2, a circle.
(c)
Phase difference zero, ‘a’ same, (x = 2( for the x-motion.
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y = a sin (t, x = a sin 2(t, equation of curve of motion.

Since x = 2a cos (t sin (t, x2 = 4a2 sin2 (t (1 - sin2(t) or x2 = 4y2 (1-y2/a2).
5.3
The Kinematics of SHM (Linked with Circular Motion)
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(a)
Consider the projection of point P2 on the diameter AB - point N.
(b)
Acceleration of P2 = ( = SYMBOL 119 \f "Symbol"2r along PO.

(c)
Acceleration of N is 

 (or 

) = SYMBOL 119 \f "Symbol"2r cos SYMBOL 113 \f "Symbol", directed towards O.
(d)
Displacement of N from O is x = r cos SYMBOL 113 \f "Symbol".
(e)
Hence the relation, 

 = - SYMBOL 119 \f "Symbol"2x.
Alternative Description
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(a)
At point P an acceleration, (, acts along PO, with ( = a(2. Since the motion of Q along AB is due to the motion of P, the acceleration of Q is the component of that of P along the direction of AB. i.e. (’ = a(2 sin (t.

(b)
Distance of Q from O = a sin (t. ( (’ is proportional to QO.
(c)
Since force is acting in opposite direction to measured values of y, then (’ points towards O.
(d)
(i)
y = a sin (t

(ii)



= a( cos (t

(iii)



= -a(2 sin (t
(e)
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5.4
Energy in SHM

K.E. = 

, P.E. = 

.
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5.5
The Dynamics of SHM

5.5.1
Horizontal Block-spring system

5.5.1.1
Suitability of being a S.H.M.

(a)
Simplest method is to attach spring to a rigid support at one end and at the other to the object resting on a smooth table - then pull object, extending spring.
(b)
Object will oscillate about unstretched length of spring with S.H.M. since extension of spring SYMBOL 181 \f "Symbol" force applied. Restoring force = -kx, where k is force constant of spring.

Alternative Description

The force (kx) originates from the compression/extension (x) of the spring is always directed towards the equilibrium position or the centre of motion. The magnitude of the force and thus the acceleration are proportional to the displacement of the mass from the equilibrium position. Hence this force is restoring and so an oscillatory motion results.
5.5.1.2
Energy
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An ideal spring of force constant k is mounted horizontally with one end fixed and the other end attached to a block of mass m (as shown above). The block is set to oscillate with amplitude A on a level, frictionless surface. (xc is the equilibrium displacement)

(a)
P.E. Curve - max. at xc - A and xc + A

K.E. Curve -
zero at xc - A and xc + A
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(b)
In S.H.M., the total mechanical energy E is conserved.

At maximum displacement, K.E. = 0, P.E. = Umax.

( Total mechanical energy of the system E = K.E. + P.E. = Umax (constant),

so K.E. = Umax - P.E. for xc - A ( x ( xc + A.
5.5.1.3
Real Spring

Suppose at a certain instant, the speed of the block is v and the length of the spring is L. For each spring element, its speed is proportional to its distance l from the end
(A)
Kinetic energy


Mass of each spring element, dM = 

.

Speed of spring element at a distance l from the fixed end, V1 = 

.

( kinetic energy of this spring element = ½ (dM) (V1)2


= 

 = 



(   Total kinetic energy of the spring
= 

 = 

 = 


(B)
Period


(i)
Extension of spring, y = x - xc


Total energy = K.E. of spring + K.E. of block + P.E. of spring


( E = 









 

 ; 

 and 

 = 0

( 

or 



(ii)
For S.H.M. 

 ( 




and T = 

 = 


5.5.2
Vertical Block-spring system

5.5.2.1
Suitability of being a S.H.M.
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As shown above, A long spiral spring of force constant k hangs vertically from a fixed support with a weight of mass m attached to its bottom end. If the weight is pulled downwards and then released
(a)
Suppose mass is moving downward below P.
(b)
Mass is decelerating and 

 = k(l + x) – mg = kx, since mg = kl.
(c)
Solution of 

 = 

 is x = a cos (0t, where (02 = 

.
5.5.2.1
Combination of Two Springs
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A small body of mass m is suspended from a fixed point P by two springs S1 and S2 as shown. The force constants of the springs are f1 and f2 respectively. If the body is pulled vertically downwards through a small displacement show that it subsequently moves with simple harmonic motion of period 
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5.5.3
Inclined Block-spring system

A light spring of force constant k is connected to a block of mass m on a frictionless surface inclined at an angle θ to the horizontal. The block is displaced a distance A from its equilibrium position O and then released. Suppose at a certain instant the displacement of the block from the equilibrium position is x as shown.
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(A)
Period


(a)
At equilibrium, mg sinθ = keo.


(b)
When the block is displaced x from the equilibrium position




mg sinθ– k(x + eo)
= m
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, mg sinθ– kx – keo = m
[image: image90.wmf]x

&

&








 
[image: image91.wmf]x

&

&


= 
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(c)
Therefore the motion is s.h.m. with period T = 
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 which is independent of θ.
(B)
Subsequent motion

(a)
The motion of the block can be described by the equation x = A cos 2πft, where t is the time.

(b)
A is the amplitude of oscillation (i.e. greatest displacement) which depends on the total mechanical energy (
[image: image95.wmf]2
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kA2) imparted to the system initially. (It depends on the initial displacement of the block when it is initially released from rest.)

(c)
f is the frequency of oscillation which depends on the intrinsic properties (elasticity and inertia such as k and m) of the system.

(C)
Displacement, velocity and acceleration graphs.
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(i)
Velocity leads displacement by 
[image: image99.wmf]2
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(ii)
Acceleration is in opposite phase to displacement.
5.5.4
Simple Pendulum
5.5.4.1
Suitability of being a S.H.M.

As shown below, a simple pendulum consisting of a weight suspended vertically by a string, of length l, attached to a fixed point is set in motion in a vertical plane, the amplitude of oscillations being small.
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Along tangent at B 
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, since oscillation amplitude small

S.H.M. and solution is y = y0 sinSYMBOL 119 \f "Symbol"t, 

= SYMBOL 119 \f "Symbol" y0 cos SYMBOL 119 \f "Symbol"t and 

= -SYMBOL 119 \f "Symbol"2 y0 sin SYMBOL 119 \f "Symbol"t, where

.
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5.5.4.2
Experiment


[image: image103.wmf]L


The above figure shows a simple pendulum which consists of a bob suspended by a light, inextensible string of length L from a fixed point. If the bob is slightly displaced to one side and then released, it will perform S.H.M.

(A)
Force causing S.H.M.


The (tangential component of the) weight of the bob (mg sinθ) provides the restoring force.
(B)
Mass of the bob

(i)
A small spherical heavy bob is usually used.

(ii)
The centre of mass of the spherical bob can be easily located (same as its geometrical centre) so that the effective length L can be measured more accurately.



The bob is small/heavy so that the effect due to air resistance is minimized.



The bob is heavy so that the mass of the string can be neglected.

(C)
Measuring the gravitational acceleration g.

(i)
Period of oscillation of the pendulum is given by 
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(ii)
Measure the period T of the simple pendulum using a stop watch for different values of L.

(iii)
A graph of T2 against L should be plotted which is a straight line passing through the origin.



Using formula T = 2π
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Using the slope of the graph = 
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(iv)
Precautions


(I)
Ensure the pendulum oscillates with small amplitude (less than 10∘).



(II)
Make sure the pendulum oscillates on the same vertical plane.



(III)
In measuring period T, at least 20 oscillations should be counted.

Alternative description
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(a)
(i)
Ticker tape is attached to weight.

(ii)
Weight released from position (1) and swings to position (2), ticker timer having been 


switched on.

(iii)
The dots on tape indicate displacements for equal time intervals of 0.02s/0.01s.
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(b)
(i)
Using tape a displacement/time graph is plotted.
(ii)
Velocity at different times is obtained by drawing a tangent at particular point on plot and determining slope.
(iii)
Plane mirror rotated until curve and mirror image co-incide and then tangent is perpendicular to mirror surface.










(iv)
Acceleration at these times is obtained from corresponding slopes of the velocity/time graph.

(v)
If S.H.M. - displacement/acceleration graph a straight line of -ve slope.
(c)
Sources of errors
 
(i)
Not S.H.M. due to finite amplitude the approximation sin SYMBOL 113 \f "Symbol" = SYMBOL 113 \f "Symbol" does not hold.
(ii)
Damping of motion by ticker tape may seriously affect the period.

(iii)
Not a point mass and so there is difficulty in measuring l.

(iv)
Buoyancy of the air
will reduce downward force on mass - affecting Period.
5.6
Damped Oscillation

Damped oscillation takes place, energy of the system decreases, amplitude of oscillation gradually decreases to zero, the frequency is smaller and the period is longer.
Alternative description

Damping of body by viscous force of medium in which oscillation takes place will reduce sharpness of frequency response (e.g. replace air by water).
5.7
Forced Oscillation
5.7.1
Resonance

(a)
If power is transferred from an oscillating system (or wave) A to another unexcited system B, when the frequency of A is varied 
the power transfer A to B will be maximized
at certain frequencies.
(b)
Resonance is considered to have taken place at these frequencies which are the natural oscillation frequencies of system B.
Alternative description

(a)
For a simple pendulum, if hand is moved slightly in direction shown when body is at extreme position P the oscillation of the pendulum can be sustained.

(b)
Frequency, 

, where l is pendulum length and g acceleration of free fall.
Alternative description

(a)
For an oscillating spring, vibrator consists of soft iron metal strip which is alternately attracted by soft iron core in a solenoid connected to an a.c. source.
(b)
Frequency of oscillator adjusted to resonance Frequency, 

, where m is mass of body and k force constant (extension/ force) for spring.
5.7.2
Forced Oscillation and Resonance

(a)
A dormant physical system A can be excited into forced oscillations by coupled energy transfer from a sustained oscillating system B, though the induced oscillation amplitude will, in general, be small.
(b)
If the oscillation frequency of B is adjusted to the natural oscillation frequency of A, maximum power transfer will occur and the amplitude of the induced oscillations in system A will maximize – this phenomenon is called resonance.
Alternative description

(a)
A system of natural frequency fo is being driven by a driving force of frequency f. The system, oscillating with frequency f, is said to perform forced oscillation.

(b)
If f is close to or equal to fo of the system is in resonance with the driving force and the amplitude of the system becomes very large.

5.7.3
Phase Relationship


[image: image112.wmf]
A spring is held vertically with a weight, attached to its lower end. It is made to oscillate vertically by a periodic up-and-down motion of the hand.
(a)
At low frequencies the mass/spring vibrates with forced oscillations, when oscillation amplitude a maximum, resonance takes place with the frequency of the hand oscillation the same as the natural frequency of oscillation of the mass/spring, and at higher frequencies forced oscillations occur again.
(b)
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(i)
At first the mass moves in the same direction as the hand-in-phase.
(ii)
After resonance the mass moves more and more in the opposite direction - out-of-phase. In fact, at resonance phase difference is /2.
Alternative description

The driving force and the displacement of the resonating system have a phase difference of a quarter of an oscillation, i.e. 90∘or 
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5.7.4
Amplitude
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The natural frequencies of (the suspension of) a car should not equal any that may be produced by the forces experienced in its motion. Also there should be sufficient damping so that no large amplitude vibration is produced.
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Chapter 6 Angular Momentum
6.1
Moment of Inertia

6.1.1
Depending Factors

The moment of inertia of a body about some axis depends on the way in which the mass (or shape) is distributed; and the position (and) orientation of the axis of rotation.

6.1.2
Role in Rotational Motion

(a)
The moment of inertia has a role in rotational motion which is analogous to that of the mass in linear motion.

(b)
The mass in linear motion represents the factor determining the linear acceleration associated with a particular force.

(c)
The moment of inertia represents the factor determining the angular acceleration associated with a particular torque.

(d)
Thus both are factors representing the ‘inertia’ of the system, which give resistance to the respective motion.
6.1.3
Moment of Inertia and Kinetic Energy
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(a)
Body can be divided up into particles of mass m1 distance r1 from rotation axis O, m2 distance r2 etc.
(b)
Total K.E. of body 
= ½m1(r1SYMBOL 119 \f "Symbol")2 +  ½m2(r2SYMBOL 119 \f "Symbol")2  + ...
 = ½SYMBOL 119 \f "Symbol"2(SYMBOL 229 \f "Symbol" mr2) = ½ISYMBOL 119 \f "Symbol"2 , where

the moment of inertia, I = SYMBOL 229 \f "Symbol" mr2 analogies are I(m) and SYMBOL 119 \f "Symbol"(v)/analogy is  ½ISYMBOL 119 \f "Symbol"2  (½mv2).
6.1.4
Experimental Determination of I of a Flywheel
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(a)
A mass M is attached to the end of string which has its other end threaded through a hole in the axle A of the flywheel W, the string being wound around the axle.
(b)
When the mass M dropped the string is unwound and when M reaches the ground the string 
just slips off axle, allowing it to continue to turn.
(c)
Let no. of revs. of W until M hits ground be n and the further no. of revs. after this until W comes to rest be n’ - and time t is taken by a stopwatch.
(d)
The no. of revs. can be obtained by observing a mark on rim of flywheel, R.
(e)
Loss in P.E. of M = gain in K.E. of M + gain in K.E. of flywheel

+ work done against friction




(f)
The distance fallen h is measured by a meter rule, the radius of axle r is measured by calipers.
(g)
W is the work done against friction per rev. of axle.
(h)
This can be obtained, since ½ISYMBOL 119 \f "Symbol"2 = n’W, i.e. W = ISYMBOL 119 \f "Symbol"2/2n’, where if SYMBOL 119 \f "Symbol" is angular velocity of flywheel when M hits the ground, (SYMBOL 119 \f "Symbol" + 0)/2 = 2SYMBOL 112 \f "Symbol"n’/t, i.e. SYMBOL 119 \f "Symbol" = 4SYMBOL 112 \f "Symbol"n’/t.
(i)
Hence (1) gives 

 enabling I to be computed.
6.2
Conservation of Angular Momentum
A man, with his arms stretched out, is standing at the centre of a light, rotating, horizontal circular platform which can rotate freely about its vertical axis. He puts down his arms.

(a)
The spinning motion will be speeded up as he puts down his arms (angular velocity increases) which leads to a decrease in his moment of inertia I.

(b)
As no external torque acting on the man, his angular momentum will remain constant.

(c)
By conservation of angular momentum,
Iiωi
= Ifωf, ωf
= 
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(d)
The man’s rotational K.E. will increase due to the work done by the man.
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6.3
Rolling
Two identical cylinders, A and B, are held with their axes horizontal and at the same height on slopes of the same inclination.

(a)
As cylinder A slides down a smooth slope, no rotation occurs so all the potential energy is converted to translational K.E.

(b)
As cylinder B rolls down a rough slope, the potential energy is converted to translational and rotational K.E.

(c)
Since the loss in potential energy is the same for both cylinders, the translational K.E. of cylinder A is greater than that of cylinder B.

(d)
Hence cylinder A (same mass as B) has the greater velocity when reaching the bottom of the slope.

Alternative description


[image: image128.wmf]h
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(a)
Roll cylinders down inclined plane from rest.
(b)
Total K.E. =  ½mv2 + ½ISYMBOL 119 \f "Symbol"2  (SYMBOL 119 \f "Symbol"  = v/a), loss P.E. = mgh.
( v2 = 2mgh/(m + I/a2)
(c)
Clearly the greater I (hollow cylinder) the slower the velocity v and the longer the time to roll down.
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